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Let.r be a continuous real function defined on [0, 1]. A real rational function
ro E R;;'(C) is a local best approximation to cI+ (1 - c) ro for each c > 0 if and only
if ro is a global best approximation to.r from Re R:'(C). 1988 Academic Press, Inc.

I. INTRODUCTION

Suppose that a real rational function '0 is a local best approximation to
a continuous real function I from the real rational functions R';. It is
known then that '0 is a global best approximation to I, and that it also is a
best approximation to each function on the ray {I,. = cl+ (I ~ c) '0: c?: O}.
However, if,o is the best approximation from R';(iC)-the complex valued
rationals defined on the unit interval-it is not necessarily a best
approximation to each Ir' Moreover it is not known, in the complex
setting, if '0 being a local best approximation implies that it is a global best
approximation.

We show here that '0 being a local best approximation to all Ie from
R';(iC) is a very strong condition, equivalent to '0 being a global best
approximation from Re R';(iC).

Notation. The real polynomials of degree less then or equal to k which
are defined on [0, 1] are denoted by .q1!k' The corresponding complex
polynomials are written .'J},(iC). The degree of a polynomial p is op.

(1.1 )

and

(1.2 )

Analagous statements define 9":- (iC) and 9l';( iC).
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For a function g and a set K s;; [0, 1],

and

Ilgll = Ilgll ro.l]·

We use

crit g = {x E [0,1]: Ig(x)1 = Ilgll},

and
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(1.3 )

(1.4 )

(1.5)

I
g(x)

sgn g = Ig(x)I'
0, x=o.

(1.6 )

As usual Re g and 1m g represent the real and imaginary parts of g.
For a set, A, of functions on [0, 1],

Re A = {Re g: g E A }

1m A = {1m g: gEA}.
(1.7)

A function f is said to have g E A as a best approximation from A if

Ilf - gil = inf{ Ilf -all: aEA}. (1.8 )

If there is a neighborhood U of g such that g is a best approximation to f
from A n U, than g is a local best approximation to f

Reserved Notation. We will reserve the following notation throughout
the paper, PoEflJ,n, qoEf!J'n We assume that Po and qo have no common
factors.

(1.9 )

and

Let f be a continuous real function on [0, 1]; we write, for creal,

j,. = cf+ (l - c) ro,

and

(1.10)

(1.11)

(1.12)
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II. ESTIMATES FOR Ile,.11

The proof of the main theorem uses numerous computations. This
section collects results which conclude that a function g has the property
that lie,. - gil < Ilecll·

LEMMA 2.1. If

lie - gil crit e < Ileli crit e>

then for large c,

Proof There is a neighborhood U of crit e for which

lie - gil U < IleII.

Hence

lie,. - gil u::S; II (c - l)(f - ro)ll u + II f - ro- gil u

::s; (c-l) Ilell u+ Ilell

::s; c Ilell

= Ilecll·

For points not in U we have an e > 0 such that

Ilell[o,I]-u::S; Ilell-e.

So in this case,

lie,. - gil [0,1] - u::S; Ilecll [0,1] - u + II gil

::s;c[llell-e] + Ilgll.

So if

c> Ilgll/e,

Ile,.-gll[o,I]-u::S;c Ilell = Ile,.ll·

Combining (2.3) and (2.5) proves the lemma. I

LEMMA 2.2. If

lie - Re gil < llell,

(2.1 )

(2.2)

(2.3 )

(2.4 )

(2.5)
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then for large c

lie,. - gil < IleJ.

Proof From Lemma 2.1 we need only show that

lie - gil cfit e < llell.

For x in crit e = crit en

if and only if
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(2.6 )

(2.7)

if and only if

I(e- g)(xW- (c-l) e(x) Re g(x)+ [1m g(x)f ~ lief, (2.9)

if and only if

[1m g(X)]2 ~ (c-l) e(x). (2.10)

From the hypothesis, Re g(x) must be a nonzero number of the same sign
as e(x). Therefore the right side of the inequality can be made arbitrarily
large with c. I

LEMMA 2.3. If g is a real valued function such that sgn[g(x)] =
sgn[e(x)] for all x in crit e, then for all sufficiently large c,

lie, - gil < IleJ.

Proof If II gil cfit e < II eell, then lie, - gil cfit e < II eJ. Hence the lemma
follows from Lemma 2.1. I

LEMMA 2.4. x E crit e, then

lief -Ie(x) - g(x)1 2 = 2e(x) Re g(x) -I g(xW.

Proof This is acquired by just expanding le(x) - g(x)1 2
. I

III. CLASSES OF POLYNOMIALS

LEMMA 3.1.
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Proof A proof for this known result can be built using the degrees of
the polynomials and the dimensions of the linear spaces. (For example, see
[I].) I

Notation. For a complex j times differential function f put

Z(f)= {wEC:f(w)=O},

Z2(f) = {WEZ(f):!,(w)=O},

and

LEMMA 3.2.

{y2+ qO &,,:YE&,,}::> {tE&'2n: (1)Z(t)nZ2(qo)=0, (2)
If at> n + oqo, then t is even and t has a positive leading
coefficient, and (3) t~O on Z(qo)nR}.

Proof We wish to find ayE &" so that y2 agrees with t on the zeros of
qo, and which has coefficients that agree with those of t for powers of x
greater than n + oqo. For such a y, t - y2 is a polynomial of degree n + oqo
which has qo as a factor and the lemma will be proven.

Let H E~'qO be chosen so that H 2 agrees with t on the zeros of
qo-including multiple zeros. For example, on a double zero of qo, the
derivative of H 2 agrees with that of t. This Hermite-type interpolation is
possible since H is not zero on a multiple zero of qo. (We use conditions
(l) and (3) hypothesised for t in defining H.)

We now wish to find S EY:,- ,lqO so that

(3.1 )

has coefficients of xn+ ,lqO + I, r + Dq + 2, ... , X 2n that agree with those of t. If
It:(; n + oqo this is satisfied with S equal zero. Hence we will assume that
at = 2k > n+oqo. We proceed by examining the coefficients in the expan­
sion of (Sqo + H)2 (the coefficients of qo and H are already fixed: those for
S are to be determined). For j larger than k - oqo put the coefficient of xl

for S equal to zero.
The leading coefficient of (Sqo + H)2 is the product of the squares of the

leading coefficients of Sand qo. Since the leading coefficient of t is positive,
the coefficient of x k

- Dqo for S is determined. If 0 < j < k - oqo, the coef­
ficient of X 2k - I in the expansion of (Sqo + H)2 can be written as the sum of
two terms. One consists of twice the product of the lead coefficients of S,
qo, and Si the coefficient of x D

' i in S. The other is an expression composed
of coefficients of qo and already determined coefficients of S. Hence Sj can
be chosen so that the coefficients of X 2k - I in t and (Sqo + H)2 are equal. I
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COROLLARY 3.3.

LEMMA 3.4.
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{W(PoP - qolJ.) qo - Po "/ +qoyfJ: WE fJ}Jd' IJ., fJ E fJ}Jm, P, 'I E &:,}

:2 {fJ}Jm+nqO - PO(q2 +S2): q, S E fJ}Jn, and Z(y2 + S2) n Z(qo) = 0}.

Proof From Corollary 3.3, each member of this set can be written in
the form qov- Poy2 for some vEfJ}Jm+n' Choose 0 so that v-yo has a real
zero. Then there are WE fJ}Jd and UE .'?I'm + n_d such that

Now choose IJ. and {3 so that

We have

WU = v-yo. (3.2)

(3.3 )

W(PoP - qolJ.) qo - Poy2 + qoyfJ = wuqo - Poy2 + qoyb

= vqo - yfJqo - Poy2+ qoyb

=vqo-Poy2. I (3.4)

IV. NOTATIONAL CONVENTION

Let wEd, IJ., bE fJ}Jm' and {3, 'I E &:,. For the remainder of the paper we will
write, for A real,

(4.1 )

(4.2)

(4.3 )

and

(4.4 )

640/52/3·8
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V. LOCAL BEST ApPROXIMAnONS

The next two lemmas record the result of straightforward computation
from definitions.

LEMMA 5.1.

'0 _,. = ..1. 2 {[Ppo - aqo] [wqo + A
2
p] - [y

2
po - 15YQo]}

/. qo[(wqo + A2p)2 + (Ay)2]

+ iA {(YPo-15qo)(Wqo+A2P)-A2Y[{3po-aqo]}.
qo[(wqo + A2p)2 + (),y)2]

LEMMA 5.2.

LEMMA 5.3. If

lie - Lllcrit e < lie/I,

then for all sufficiently small .Ie

lie - r;.ll < Ilell·

Proof From Lemma 2.4 there is an 8 > 0 such that on crit e

(5.1 )

This inequality must also hold on some neighborhood U of crit e. It is also
true that on V for 0 <.Ie ~ 1,

It is always true (because e is real) that

Since

(5.2)

(5.3 )

and A 1m L=lm L;., (5.4 )

line (5.2) shows that on U,

le-L,l12~ IleI1 2 -A,28

~[lleII-A2 21~ellr (5.5)
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From Lemma 5.2 we conclude that for small positive A

Iii-rJu< lief!.
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(5.6)

Since ri converges uniformly to ro, and since there is a positive J1. for which

Ilell [0,11- u < llell - J1.,

we obtain that for all sufficiently small A,

II I - r),11 [0,11- u< lie/I·

This combines with line (5.6) to prove the lemma. I

(5.7)

(5.8)

THEOREM. !fro is a local best approximation to Ie lor all c>O then ro is
a global best approximation to Ilrom Re R;;'(C).

Proof This is now just a matter of piecing together the previous
lemmas. Suppose there is a function

for which

p + it
P=--. E R;;'(C)

q+ IS

III - Re pll < lIell.

(5.9)

(5.10)

We may also assume that Z(q2 + S2) n Z(qo) = 0. From Lemma 3.4 choose
w, CI., f3, 6, and y so that

w(Pof3 - qoCl.) qo - Poy2 + qo6 = qo[pq - st] - PO[q2 + S2], (5.11)

and construct r, ri., L, and L i. as in equations (4.1)-(4.4). By Lemma 2.3 we
have that for a sufficiently large c

Ilee - Re LII < Ilecli.

From Lemma 2.2 we can in fact assume

Ilee - LII < lleell·

Replacing I by Ie for some large c, we may assume that

lIe-LIi < llell·

From Lemma 5.3, ro is not a local best approximation to f I

(5.12 )

(5.13 )

(5.14 )
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